Future Networked Car Symposium FNC2025

SESSION 2: Challenges in Achieving Effective Vehicle Remote Driving

Mapless Al

Drive. Remotely. Safely.

Leadership Team

Philipp Robbel, PhD CEO and Co-Founder

- Director of Engineering at nuTonomy led • safety and simulation teams (acquired in 2017)
- Head of Safety at Aptiv Autonomous Mobility •

BOSCH

- Engineering at Bosch (L4 Highway Pilot)
- PhD in Robotics, MIT

Jeffrey Kane Johnson, PhD CTO and Co-Founder

- Technical expert in Autonomous Vehicle systems
- Built AV navigation at Bosch, Apple, and Uber
- Principal Investigator in NSF award for vehicle • safety system
- Computer Science PhD, Indiana University

Uber

nuTonomy • A P T I V • © 2025 Mapless AI, Inc. Proprietary and Confidential

Vehicle Movement is Critical for Fleet Operations

Fleet side:

Keep driver productivity high Rebalance fleet effectively

Customer-facing side:

Meet needs for vehicle availability Enable new revenue streams from use cases like vehicle delivery on demand

Benefits to Remote Driving

OEMs

On-going service revenue

Brand differentiator (luxury segment)

> B2B use cases (maintenance, delivery)

Consumers

Willingness to use remote driving services*

Valet or remote chauffeur: gain free time & avoid tedious tasks

Fleets

Reduce operational costs

Increase driver productivity

Offer direct vehicle delivery to customer (*e.g.*, rentals)

* McKinsey & Co, "Remote-driving services: The next disruption in mobility innovation?" (Jan 3, 2025)

Mapless AI: Full Stack for Public Road Operation

- Optimized install targeting fleet partners
- Trained remote driver staff
- Targeted to automotive standards
- Safe motion at all times independent of network

Ensuring Safe Motion during Remote Driving

Full Safety concept for remote driving

- Supports remote driving or AV stack
- Automotive-grade
- ADAS-level pricing

Redundant Sensors

- Cameras and LIDAR—processed locally on vehicle
- Forward sensor cleaning

Low-latency perception and control contingency layer is required for mitigating safety hazards during Teleoperation.

Cellular bonding < 6Ghz

- Redundant 4G/5G Sub-6 channels
- Link management: load balancing, FEC

Safety System

- Redundant safety (2x brake)
- Backup power
- Fully-driverless operation

Deployments

Areas of Operation

Mapless operation:

- Pittsburgh, PIT airport, Harrisburg, PA
- Detroit, MI
- Tampa, FL
- Massachusetts

Use cases:

- Carshare
- Fleet Ops
- Vehicle manufacturing

Corktown Carshare

<u>Corktown Carshare</u> is available in the Detroit Corktown area since Feb, 2025

Remote driving unlocks virtual parking spots and return to charging hub.

Corktown Carshare

Vehicles are controlled from control center in Pittsburgh, PA.

#ConnectedCar Discussion Topics

Topics of Interest @ Mapless

- Application layer tooling
 - Effects of package drop / latency / jitter *)
 - Fault injection testing
- Operator longitudinal motion perception
 - HUD overlays, sound
- Reaction to link degradation
 - Corrective measures (bandwidth adjustment)
- Prediction of link performance
 - Offline: mapping
 - Online: RB allocation
- Safety system
 - Conservative, safe actions in times of degraded performance

*) Not just a teleoperation issue! Cf. NHTSA AV STEP comments (2025)

Move Vehicles Without Moving People

VIP invites for rides in Detroit, Pittsburgh, or Boston: vip@mapless.ai