

FUTURE NETWORKED CAR SYMPOSIUM

Vehicle autonomy: Where are we now? What is still missing?

Dr. Maria J. Alonso Autonomous Systems Lead World Economic Forum

24 March 2025

This presentation builds largely on outputs from the DRIVE-A: Vehicle Autonomy initiative work carried out in collaboration with the Boston Consulting Group.

World leaders face deep and complex shifts

Economic and industrial transformation

Geopolitical transformation

Technological transformation

Cultural and value transformation

The World Economic Forum is the International Organization for Public-Private Cooperation

The world is undergoing deep, complex and accelerated transformation, and neither government, nor business, nor civil society alone can address our common challenges.

PROFESSOR KLAUS SCHWAB
FOUNDER OF THE WORLD ECONOMIC
FORUM

Where are we now?
Readiness across
use cases

Four key distinct use cases

Personal vehicles

- Increase road safety by reducing human error
- Enhance convenience during travel

HIP Privately owned or leased

Gradual development from ADAS (L0-L2+) to AD (L3/L4)

N Highway, suburban and urban

Focus of this presentation

Robotaxis and roboshuttles

- Enhance the flexibility of public transport
- Reduce operational costs and improve accessibility

Fleet providers own & operate

Autonomy-first system development (L4)

Suburban and urban

Autonomous trucks

- Address critical driver shortages
- Increase efficiency and flexibility with 24/7 uptime

Fleet providers own & operate

Autonomy-first system development (L4)

Highway and suburban

Special purpose autonomous vehicles

- Improve safety in hazardous environments
- Enhance efficiency for specialized tasks

Specialist firms own & operate

Autonomy-first system development (L4)

Special environments

OWNERSHIP

EXPECTED

BENEFITS

TECH LEVEL

DOMAIN

Four key distinct use cases

Personal vehicles

- EXPECTED BENEFITS
- Increase road safety by reducing human error
- Enhance convenience during travel

OWNERSHIP

TECH LEVEL

DOMAIN

Privately owned or leased

Gradual development from ADAS (L0-L2+) to AD (L3/L4)

Highway, suburban and urban

Robotaxis and roboshuttles

- Enhance the flexibility of public transport
- Reduce operational costs and improve accessibility

Fleet providers own & operate

Autonomy-first system development (L4)

Suburban and urban

Autonomous trucks

- Address critical driver shortages
- Increase efficiency and flexibility with 24/7 uptime

Fleet providers own & operate

Autonomy-first system development (L4)

Highway and suburban

Special purpose autonomous vehicles

- Improve safety in hazardous environments
- Enhance efficiency for specialized tasks

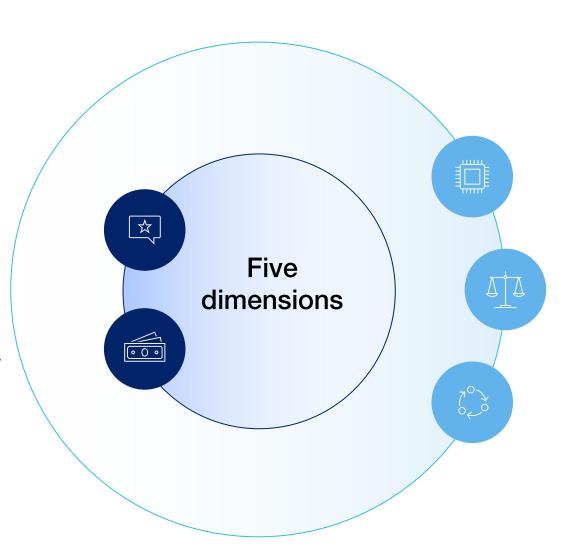
Specialist firms own & operate

Autonomy-first system development (L4)

Special environments

Five dimensions as backbone to assess scaling readiness

DEMAND


When will customers buy autonomous vehicles?

01. Consumers

- → Consumer trust and interest
- → Recurring system usage

02. Economics

- → Projected ADAS/AD system prices
- → Willingness-to-pay for ADAS/AD

SUPPLY

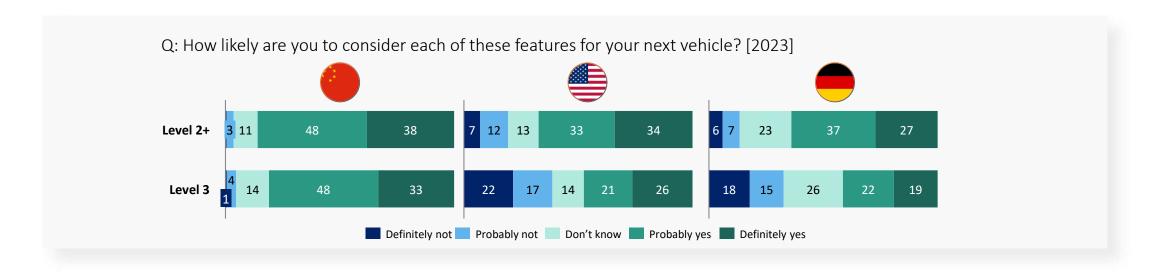
When will autonomous vehicles be available?

03. Technology

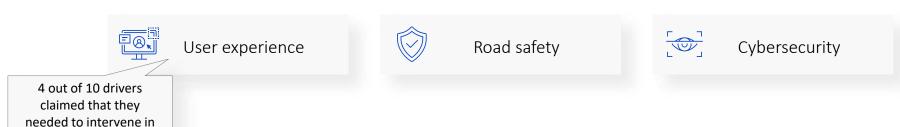
- → Remaining technological obstacles
- Expected time to overcome obstacles

04. Regulation

- → Current regulatory status
- → Anticipated regulatory changes


05. Ecosystem

- → Deployment potential per OEM
- Ecosystem ramp-up to support scaling


recent ADAS experience

Chinese consumers embrace AVs, backed by advanced tech, while others remain more hesitant

To continue building trust, three aspects must be considered:

L2+ expected to dominate in the short term, gradual move to L4 once tech challenges are resolved

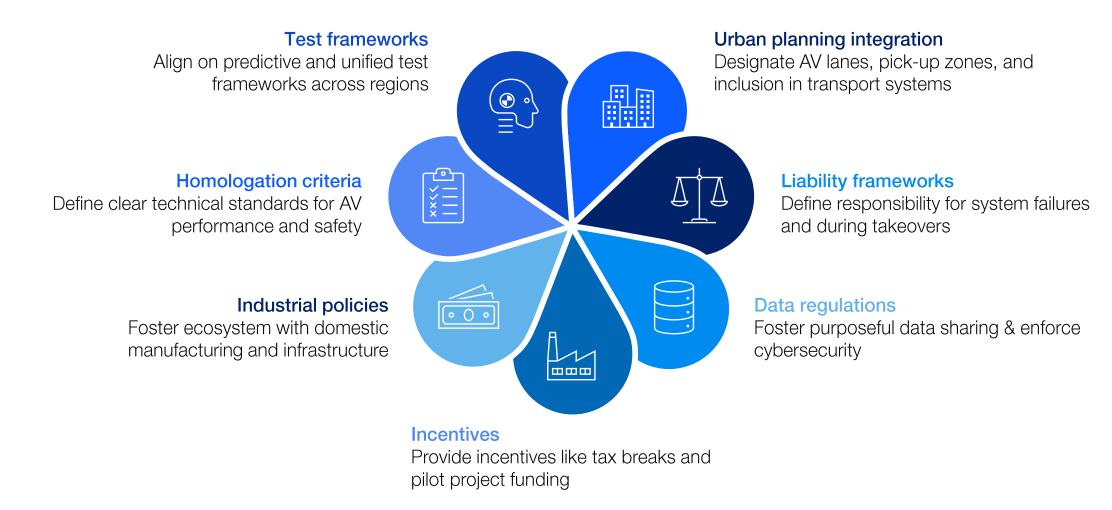
Three key tech challenges to be solved

Solve most important ODDs

Multiple ODDs (multimodal, snow, ...) are still to be solved to provide functional L4

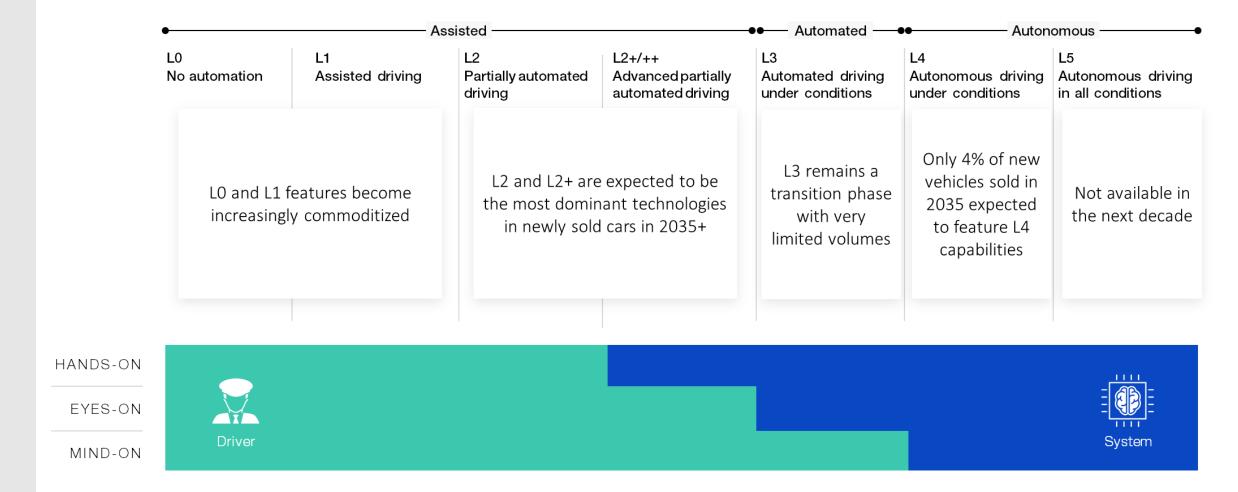
Select the right modeling approach

Debate persists if AVs should mimic human thinking or focus on solving edge cases


Ensure scalability across regions

Highly customized software per region makes global scalability a major challenge GenAl playing an increasing role in solving tech challenges.

While the black-box nature of Al results in safety concerns, recent breakthroughs seem to provide more interpretable and verifiable solutions.



Policy measures as comprehensive packages to foster safe scaling; moderate progress across most buckets in forerunning geographies

Private ADAS/AD adoption is an evolution, with assisted vehicles, and not autonomous vehicles, dominating the next decade

Four key distinct use cases

Personal vehicles

- Increase road safety by reducing human error
- Enhance convenience during travel

OWNERSHIP Privately ow

TECH LEVEL

EXPECTED

BENEFITS

DOMAIN

Privately owned or leased

Gradual development from ADAS (L0-L2+) to AD (L3/L4)

Highway, suburban and urban

Robotaxis and roboshuttles

- Enhance the flexibility of public transport
- Reduce operational costs and improve accessibility

Fleet providers own & operate

Autonomy-first system development (L4)

Suburban and urban

Autonomous trucks

- Address critical driver shortages
- Increase efficiency and flexibility with 24/7 uptime

Fleet providers own & operate

Autonomy-first system development (L4)

Highway and suburban

Special purpose autonomous vehicles

- Improve safety in hazardous environments
- Enhance efficiency for specialized tasks

Specialist firms own & operate

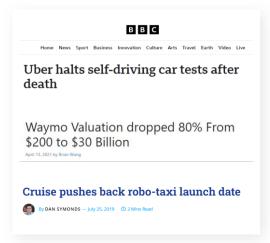
Autonomy-first system development (L4)

Special environments

The robotaxi hype: from revolution to evolution

Over-optimism 8-10 y ears ago...

Strong belief in near future of robotaxis and self-driving technology



- Elon Musk 2016

"I feel pretty good about the goal of a demonstration drive of full autonomy all the way from LA to New York. Basically from a home in LA to – let's say – dropping you off in Time Square in New York and then having the car park itself by the end of next year."

...Followed by the bursting bubble...

Accidents, slashed valuations, repeatedly delayed deadlines

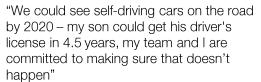
...Now on path to enlightenment?

Very first driverless commercial operations, accompanied by loud noise

Quo vadis robotaxi - 6 questions decisive

- **1. Entering |** What (and how long) does it take for robotaxi players to enter a new city?
- **2. Scaling |** How fast can robotaxi operators scale within a city?
- **3. Consumer |** Will consumers really adopt to robotaxi usage?
- **4. Cities and modes |** Where are the limits which share of cities and modes can robotaxis grab?

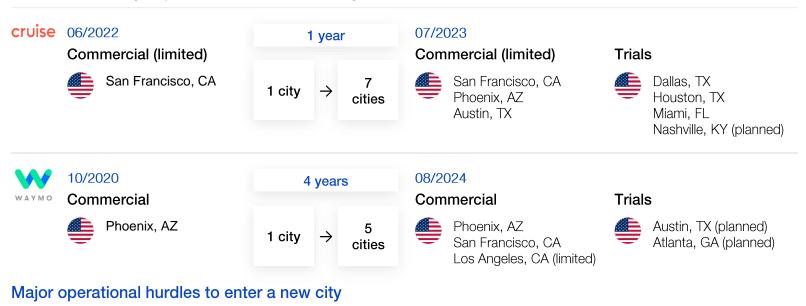
Α

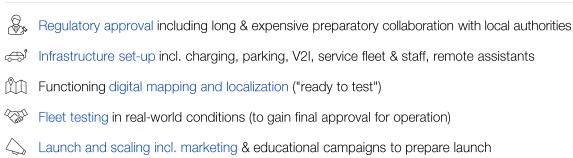

N

D

- **5. TCO** | Will robotaxis be a good business model? How does this differentiate across regions?
- **6. Ecosystem |** What can OEMs, authorities, etc. do now to accelerate the robotaxi adoption?

- Chris Urmson 2015


- Elon Musk, 2022


"I was wrong on some things... we will solve autonomy in 2024 and that should significantly reduce accidents"

Operators entering only a hand full of cities; operational "preparation" as major hurdle

Case studies, city expansion of cruise and Waymo

Comments

Cruise expanded aggressively across many cities (6 new locations in ~1y) before having to pause operations after pedestrian incident in 2023. And Cruise being discontinued in 2024.

~2-3 years

In contrast, Waymo expands relatively defensively, having added only 1 city (SF) for 3y before accelerating expansion.

Each stakeholder must deliver on their role for robotaxis at scale

	Role	Stakeholder	Tasks	At current trajectory, what is missing for scaling by 2030?	
Production	Vehicles	OEMs	Develop and produce vehicles tailored for robotaxi usage	Successful transformation to SDVs including new E/E architecture	
	AD tech	HW and SW suppliers	Develop AD software and hardware customized to local needs	 Reliable safety performance across ODDs and regions Easily scalable and affordable software 	
Enablers	Funding	VCs, strategic investors, public-private partnerships	Provide funding for R&D and scaling	Secured funding for improving tech and scaling operations	
	Regulation	Governments, authorities	Set regulation and homologation standards, provide licences, set zones	Harmonized regulation across cities and countries	
	Insurance	Insurances, risk analytics, reinsurance	Develop risk assessment models and policies	Large-scale data availability for robust risk models and policies	
Usage Operations	Infrastructure	Utilities, cities	Provide charging, V2X, pick-up zones; integrate in-traffic control	 Dedicated inner-city robotaxi infrastructure (lanes, kerb spaces) Integration in traffic management systems 	
	Fleet mgmt.	OEMs, suppliers, ride- hailing, fleet mgmt.	Handle fleets and maintenance, determine service areas	 Defined task distribution among OEMs, platforms, fleet management Scalable fleet management frameworks Defined task distribution among OEMs, platforms, fleet management Dedicated fleet control centres with specialized staff Defined customer journey and smooth processes Integration with fleet management & and control providers 	
	Fleet control	OEMs, suppliers, ride- hailing, fleet mgmt.	Manage safety backup drivers, monitor fleet performance		
	Platform	Ride-hailing and MaaS platforms	Integrate robotaxis into platforms, ensure smooth interactions and support		
	Education	Public groups, media, universities	Educate on safety and benefits, advocate for equitable access	 Large-scale education on capabilities and limitations Analysis of societal benefit of large-scale fleets 	
	Customer	B2B and B2C end users	Use robotaxis, engage in feedback loops	Trust to share streets with robotaxis as well as use them	

Four key distinct use cases

Personal vehicles

- Increase road safety by reducing human error
- Enhance convenience during travel

Privately owned or leased

Gradual development from ADAS (L0-L2+) to AD (L3/L4)

Highway, suburban and urban

Robotaxis and roboshuttles

- Enhance the flexibility of public transport
- Reduce operational costs and improve accessibility

Fleet providers own & operate

Autonomy-first system development (L4)

Suburban and urban

Autonomous trucks

- Address critical driver shortages
- Increase efficiency and flexibility with 24/7 uptime

Fleet providers own & operate

Autonomy-first system development (L4)

Highway and suburban

Special purpose autonomous vehicles

- Improve safety in hazardous environments
- Enhance efficiency for specialized tasks

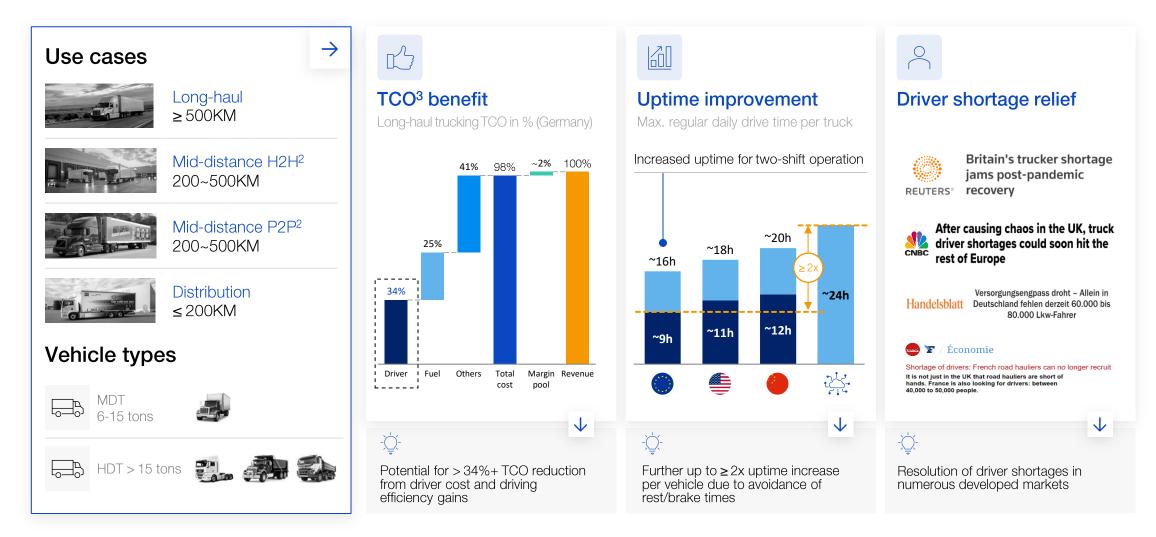
Specialist firms own & operate

Autonomy-first system development (L4)

Special environments

OWNERSHIP

EXPECTED


BENEFITS

TECH LEVEL

DOMAIN

Highly automated driving (HAD)¹ to benefit the trucking industry in 3 ways

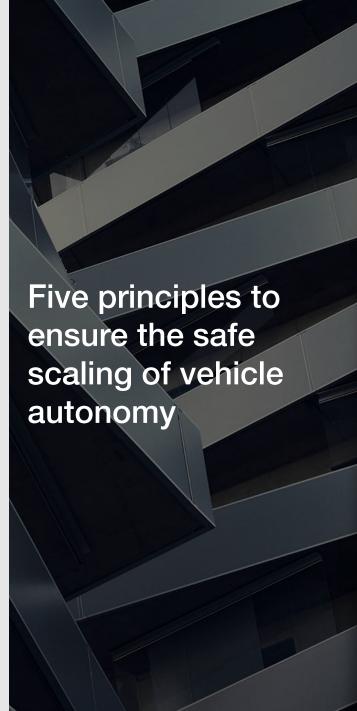
^{1.} Trucks with Level 4 driving capabilities on highways or in closed environments. 2. Hub-to-hub/Point-to-point. 3. Total cost of ownership Sources: Press research

HAD readiness varies widely, driven by tech, regulation, and infrastructure

Use cases	Anticipated readiness by 2035			Rationale
	Technology	Regulation	Infrastructure	
Long-haul hub-to-hub				 Fixed routes along highways align with L4 strengths Regulation is limited to selected routes, e.g., main TEN-T networks High-volume corridors need to be upgraded to enable AV operations
Mid-distance hub-to-hub				 Less infrastructure needed than for long-haul, making AVs more likely Shorter routes are easier to regulate and equip for AD In other aspects, similar to long-haul hub-to-hub use case
Mid-distance point-to-point				 Route variability strongly increase technological complexity Similar regulatory needs as for mid-distance hub-to-hub use case Infrastructure upgrades are more demanding than for hub-to-hub
Intra-city distribution				 Tech readiness is largely dependent on progress in light vehicles Likelihood of risk of failure causing human harm will slow regulation Complex environments with many road users challenge developments
Closed environment				 Autonomy is best suited to controlled environments and repetitive tasks Limited potential for human harm reduces the demand for regulation The operating area is restricted, widely mapped and monitored
				Deployable without limitations Deployable in selected ODDs Deployment not possible

Each stakeholder must deliver on their role for HAD trucks at scale

	Role	Stakeholder	Tasks	At current trajectory, what is missing for scaling by 2030?	
Production	Vehicles	OEMs	Develop and produce vehicles tailored for HAD usage	HAD-dedicated trucks with respective E/E architecture	
	AD tech	HW and SW suppliers	Develop AD software and hardware customized to local needs	 Reliable safety performance across ODDs and regions Easily scalable and affordable software 	
Enablers	Funding	VCs, strategic investors	Provide funding for R&D	Strong commitment across investors to HAD investment case	
	Regulation	Governments, authorities	Set regulation and homologation standards, provide licenses, set zones	Harmonized regulation across cities and countries	
	Insurance	Insurances, risk analytics, reinsurance	Develop risk assessment models and policies	Large-scale data availability for robust risk models and policies	
Operations	Infrastructure	Utilities, cities	Charging, V2X, integration in traffic control	 Dedicated infrastructure for charging and V2X communication Integration in traffic management systems 	
	Asset ownership	OEMs, leasing firms, 3PLs ¹ , fleet operators, cargo owner	Own HAD trucks, leasing to operators or self-operate	 Defined role and sales model (price/km, price/kg, etc.) Ensured 24/7 uptime to leverage TCO benefits 	
	Fleet management	OEMs, AD suppliers, fleet operators, 3PLs	HAD control tower, (remote) maintenance, repairs	 Establish control tower (alerts, remote driving, etc.) processes Facilities and staff along routes for emergency response 	
	Transport operator	Fleet operators, 3PLs, cargo owners	Warehouse network, unloading/loading, load pre-check	 Widely upgraded warehouse yards and loading docks Upskilled workforce and processes for handling HAD trucks 	
	Digital platform	Freight platforms, AD suppliers, TMS firms ²	Load matching, route optimization, fleet management, TMS integration	 Clear task distribution as multiple stakeholders strive for this role Unified platform supporting multi-OEM fleets 	
Usage	Customer	Cargo owner	Book trucking services	n/a – TCO benefits lead to high interest in HAD trucks	



Collaboration to ensure the safe scaling of vehicle autonomy

- #1 Enforce strong safety behaviours and transparency throughout organisations.
- #2 Ensure consumers are well-informed about their responsibilities when using ADAS/AD features.
- Unify the industry around shared safety metrics that enhance trust and accountability.
- Collaborate closely with regulators to build trust and align on guidelines for autonomous technology deployments.
- #5 Ensure the cybersecurity and resilience of autonomous systems to prevent disruptions from malicious attacks.

DRIVE-A Initiative

