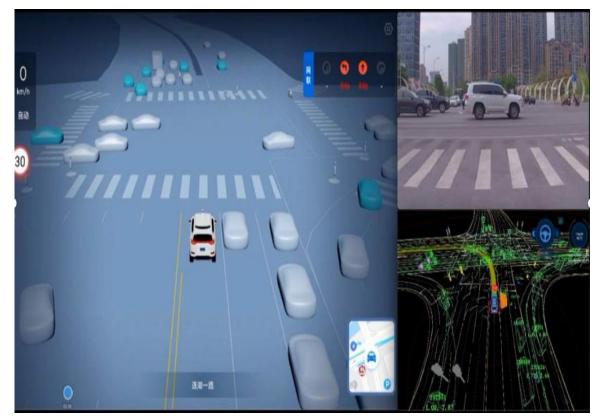

Communications Technology Enabling Automated Driving

China Academy of Information and Communications Technology (CAICT) Yuming GE

2024.03


Vehicular communication improve the ability of assisted driving and autonated driving

Supporting the evolution of assisted driving from information services to safety and efficiency services.

Support automated driving to achieve typical applications in specific areas.

Phase I/ II and High Level Automated Driving application scenarios related standards

Application Scenarios			
1	FCW: Forward Collision Warning		
2	ICW: Intersection Collision Warning		
3	LTA: Left Turn Assist		
4	BSW/LCW: Blind Spot Warning/Lane Change Warning		
5	DNPW: Do Not Pass Warning		
6	EBW: Emergency Brake Warning		
7	AVW: Abnormal Vehicle Warning		
8	CLW: Control Loss Warning		
9	HLW: Hazardous Location Warning		
10	SLW: Speed Limit Warning		
11	RLVW: Red Light Violation Warning		
12	VRUCW: Vulnerable Road User Collision Warning		
13	GLOSA: Green Light Optimal Speed Advisory		
14	IVS: In-Vehicle Signage		
15	TJW: Traffic Jam Warning		
16	EVW: Emergency Vehicle Warning		
17	VNFP: Vehicle Near-Field Payment		

BSM BasicSafetyMessage RSM RoadsideSafetyMessage MAP MapMessage SPAT Signal Phase And Timing RSI RoadSideInformation

Standard

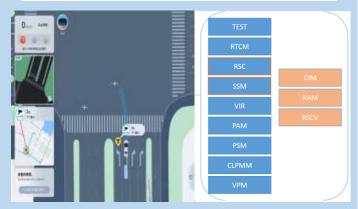
- Cooperative intelligent transportation system—Vehicular communication application layer specification and data exchange standard (Phase I)
- Technical Requirements of Message Layer of LTE-based Vehicular Communication

Application Scenarios		Application Scenarios
Vehicle Merge		SDS: Sensor Data Sharing
Identification of Vulnerable Road User	2	CVM: Cooperative Vehicle Merge
Cooperative Intersection Passing		1 5
Guidance Service of Vehicle		CVM: Cooperative Vehicle Merge
Intersection Dynamic Lane Management		CIP: Cooperative Intersection Passing
Dynamic Optimization of Traffic Signal Timing Based on Real Time Connected Data		DDS: Differential Data Service
Intelligent parking guidance		DLM: Dynamic Lane Management
Platooning		CHPVP: Cooperative High Priority Vehicle
Cooperative Fleet Management		Passing
Flexible management of highway dedicated lanes		GSPA: Guidance Service in Parking Area
Active and passive toll collection based on vehicle road collaboration		PDC: Probe Data Collection
Dynamic Path Planning for Electric Vehicles		VRUSP: Vulnerable Road User Safe Passing
OTA based on vehicle road collaboration		CPM: Cooperative Platooning Management
In the loop simulation of autonomous driving vehicle based on vehicle road collaboration		RTS: Road Tolling Service

Standard

8

10 11


12

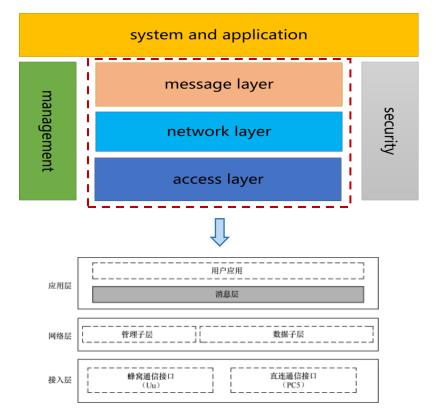
13

14

- The Requirements Standard for Enhanced V2X Application Layer Data Interaction
- Cooperative intelligent transportation system— Vehicular communication application layer specification and data exchange standard (Phase II)

	Application Scenarios			
1	Cooperative Sensing			
2	Unsigned Intersection Passing Based on Roadside Collaboration			
3	Self Driving Vehicles Extrication Based on Roadside Collaboration			
4	High Precision Map Version Alignment and Dynamic Updates			
5	Autonomous Parking			
6	Recognition of Zombie Vehicles Based on Roadside Sensing			
7	Traffic Condition Recognition Based on Roadside Sensing			
8	Recognition of Abnormal Driving Behavior Based on Cooperative Sensing			

Standard


• Data exchange standard for high level automated driving vehicle based on cooperative intelligent transportation system

C-V2X communication core standards support upper layer applications

Completed the formulation of LTE-V2X full protocol stack technical standards including various aspects, such as the requirements, access layer, network layer, message layer, application functions, and so on.

Туре	Standard Name
general	General Technical Requirements of LTE-based Vehicular Communication
access layer	The Air Interface Technical Requirements of Vehicular Communication based on LTE
network layer	Technical Requirements of Network Layer of LTE based Vehicular Communication
network layer	Test Method of Network Layer of LTE-based Vehicular Communication
message layer	Technical Requirements of Message Layer of LTE-based Vehicular Communication
message hijer	Test Method of Message Layer of LTE-based Vehicular Communication
management	Application Identity Assignment and Mapping of LTE-based Vehicle Wireless Communication Technology
security	Technical Requirement of Security Certificate Management System for LTE-based Vehicular Communication

The LTE-V2X full communication protocol stack standards

LTE-V2X communication protocol stack

5G based remote control driving standards are being developed across industries

The technical requirements standards of 5G enabled remote driving have been basically finished for approval, including various types of vehicles and different scenarios.

Standard Name

5G Enables Remote Driving: Technical Requirements for 5G Communication System

Technical requirements of information exchange system for 5G enabled remote driving

Technical requirements of 5G enabled remote driving information exchange system Mining remote operations

Technical requirements of 5G enabled remote driving information exchange system Remote Parking

Technical requirements of 5G enabled remote driving information exchange system Highway Platooning

Technical requirements of 5G enabled remote driving information exchange system Robotaxi remote control

Technical requirements of information exchang system for 5G enabled remote driving Emergency takeover of urban public traffic vehicles

Technical requirements of information exchang system for 5G enabled remote driving Remote driving of logistics-related vehicles

Technical requirements of 5G enabled remote driving information exchange system Remote operation in port

Test Evaluation Methods of information exchange system for 5G enabled remote driving

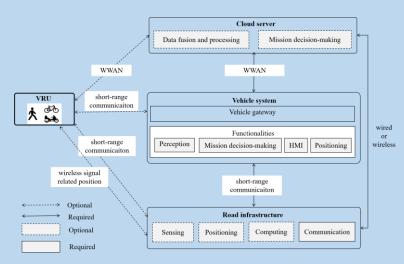
Technical Requirements of Information Exchange System for 5G enabled Remote Driving in Audio Video Transmission

Mining operations

Port operation

Logistics in the park

Urban Taxi

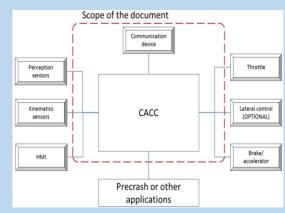

Some ITU and ETSI standards on V2X supported scenarios

ITU SG16_Requirements for vulnerable road users service using vehicle gateway

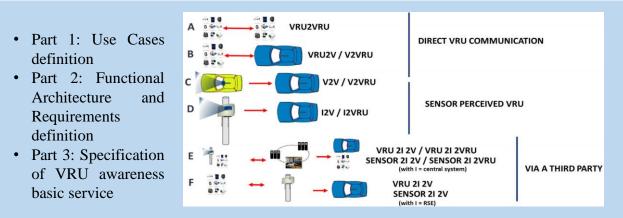
It specifies the requirements for **Vulnerable Road Users (VRU)** service using vehicle gateway, including service requirements and function requirements for vehicle system, Vulnerable Road Users device, communication network, road infrastructure as well as cloud server.

Four types of Vulnerable Road Users service:

- Case 1: When VRU has the device with the communication capability, VRU device communicates with vehicle to trigger VRU protection.
- Case 2: When VRU hasn't the device with the communication capability, road infrastructure communicates with vehicle to trigger VRU protection.
- Case 3: When VRU hasn't the device with the communication capability, other vehicle communicates with vehicle to trigger VRU protection.
- Case 4: When VRU hasn't the device with the communication capability, cloud server communicates with vehicle to trigger VRU protection.



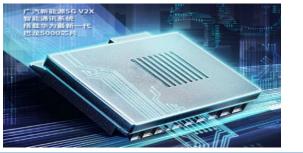
Architecture of Vulnerable Road Users service using vehicle gateway


ETSI TC ITS_Cooperative Adaptive Cruise Control (CACC)

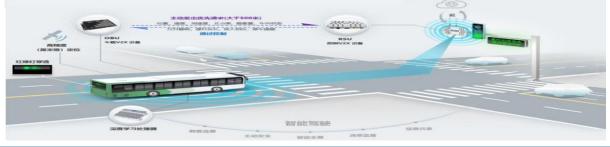
It is a pre-standardization study of the Cooperative Adaptive Cruise Control (CACC) application.

- Definition of the CACC use cases
- Definition of CACC architecture
- Requirement analysis of the application and the communication systems
- Recommendations on the standardization needs for the communication layers in support of the CACC application
- Recommendation on the CACC application standardization.

ETSI TC ITS_Vulnerable Road Users (VRU) awareness


Proposed categories of use cases

Significantly improving vehicle driving safety and traffic efficiency


Mass-produced applications

The AION V mass-produced model of GAC Group integrates LTE-V2X information with cameras and radars for perception, which not only enhances traditional ADAS functions, but also supports scenarios such as intersection collision warning that cannot be supported without communication.

The 315 smart bus based on LTE-V2X in Changsha, Hunan can achieve functions such as bus signal priority and traffic light information sharing. The average travel time optimization rate is 12.6%, and the average travel speed increase rate of the route is 14%.

Substantial progress has been made in the validation of ADAS+C-V2X collaborative adaptive cruise control applications.

Prospective applications

Remote control driving applications have attracted widespread attention

Mining operations

Huaneng Yimin open-pit mine: achieving remote control operation of 20 electric shovels

Logistics operations

Liuzhou Industrial Park: Implementing remote control driving of autonomous electric logistics vehicles

Port operation

Tianjin Port: Implementing remote control of port machinery equipment and unmanned container trucks

Robotaxi operation

Baidu: The Apollo RT6 released in 2022 is equipped with remote control function

Penetration rate of vehicle network connection significantly increases

SAIC Feifan Marvel R

Audi A7L

NIO ET7

HongQi E-HS9

GAC AION V

SAIC Feifan R7

Audi A6L

ARCFOX

GWM Tank

Hiphi X

SAIC GM Buick GL8

In 2023, the penetration rate of vehicle network connection for new passenger cars in China was **78.31%**

- 1,737,300 vehicles (<u>466,400 last year</u>) equipped with **5G modules**
- **311,300** vehicles (<u>170,000 last year</u>) have been equipped with **LTE-V2X PC5 modules**

ITU C-ITS Expert Group on Communications Technology for Automated Driving

- V2X is very important, not only for the future automated driving system (ADS), but also V2X + ADAS, like a sensor.
- EG-ComAD is a joint platform for cross industries and cross domain cooperation, the bridge of "requirements" and "solutions" and the link between "regulations" and "standards".
- Opening, Contributing, Understanding

Thank you

Ge Yuming Email: <u>geyuming@caict.ac.cn</u>