

The future of roads.

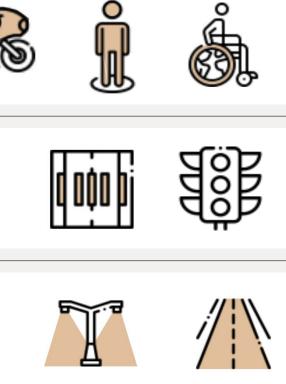
UNECE Meeting March 22, 2022 Dino Nardicchio

Roadway design is based on vehicle physics

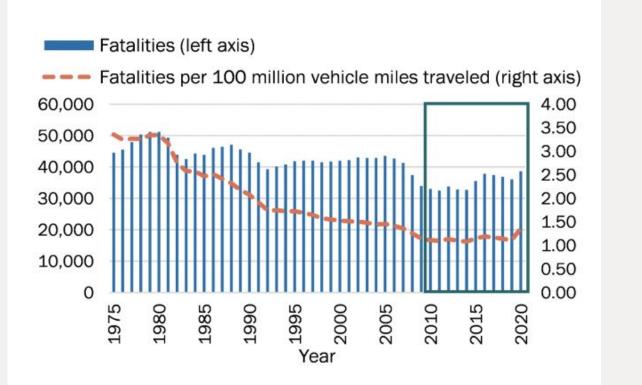
T+SSD=1.47Vt + 1.075

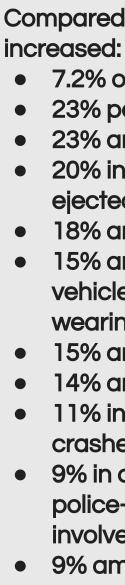
V2 R_{min}= 15(0.01e_{max}+f_{max})

mage courtesy of https://www.geotab.com/blog/longest-highway/


 $d_{b} =$

Roadway Design is based on a human driving the vehicle to deal with other issues




The results are not pretty

roadway fatalities 94.2%

In the last decade, more than 370k people died in transportation incidents in the U.S. More than 350k of them died on our roads.

Roadway fatalities and the fatality rate declined consistently for 30 years, but progress has stalled over the last decade and went in the wrong direction in 2020.

Compared to 2019, fatalities 7.2% overall 23% per mile driven 23% among Black people 20% involving persons ejected from a vehicle 18% among ages 25-34 15% among passenger vehicle occupants not wearing seatbelts 15% among ages 16-24 14% among ages 35-44 11% in speeding-related crashes 9% in crashes with police-reported alcohol involvement 9% among motorcyclists

The Future of Vehicles

Our World Today			the tipping poin	
0	1	2	3	4
HUMAN ONLY	MODERN VEHICLE	MODERN PLUS	PARTIAL AUTONOMY	FULL AUTONOMY + HUMAN
The driver controls everything (steering, braking, throttle, power, etc.)	Most functions are still controlled by a driver but some–like braking–can be done automatically by the vehicle.	At least two operational functions are automated (cruise control, lane centering, etc.) but the driver must be ready to take control of the vehicle at any time.	Human drivers are still necessary, however they are not required to monitor the situation.	Vehicle perform all safety-critical driving functions and monitor roadway conditions for an entire trip. Includes option for human driving.

Near Juture

FULL AUTONOMY WITHOUT HUMAN

Same as Level 4, without an option for human driver as there is no steering wheel or controls.

State of L4

In 2016

//

"By 2017, a vehicle will be able to drive from LA to Times Square without a single touch of the steering wheel" **Automobile CEO**

"We will have a Level 4 vehicle in 2021 – no gas pedal, no steering wheel, and the passenger will not need to take control"

Automobile CEO

In 2022

Trucking

Improves redundancy for L2+ systems

Improves quality of driver experience

Reduces shipping costs

Additional savings via battery electric fleet integration

Transit

Improves safety, which reduces operating costs

Enhances fleet management and planning

Improves reliability

Provides equitable access to autonomy

Passenger Vehicles

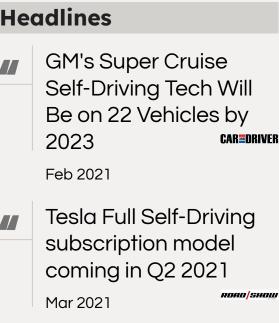
Improves safety

Increases throughput and time savings

> Provides value of autonomy to passengers

Creates opportunity for future integration with EV charging

Level-4 autonomy has not arrived, but Level-2 features 📿 are reaching market scale


				Est. sales volume, K		
OEM	Intro year	Models ¹ , #	Examples	2020	2023	Н
General Motors Super Cruise	2020	22	•Cadillac Lyriq •Buick Encore	37.6	177.3	_
Ford BlueCruise	2020	11	•Mustang Mach-E •F-150 SuperCrew	3.7	52.7	_
Tesla Autopilot	2020	5	• Model X • Model 3	153.5	302	
Volvo Pilot Assist	2023	2	•Volvo XC90 •Volvo XC100	0	7.6	_
Volkswagen Traffic Jam Assist	2020	12	•Volkswagen Atlas •Audi A4	27.4	52.1	_
Nissan ProPilot Assist 2.0	2021	2	• Infiniti QX50 • Infiniti QX55	0	5.5	/
Toyota SafetySense 2.5	2021	46	•Toyota Camry •Lexus LX	0	421.6	

Estimated based on public

Est sales volume K

2021 Toyota Camry is first to get Safety Sense 2.5 Plus

Jul 2020

RAAA/SHAU

What can be accomplished if roadways were also designed for vehicle technology?

The Future of Roads

CARS ARE GETTING SMARTER

Vehicles with increasing ADAS¹ capability are reaching scale

ROADS HAVE NOT KEPT UP

Road infrastructure is woefully inadequate to achieve these vehicles' full potential

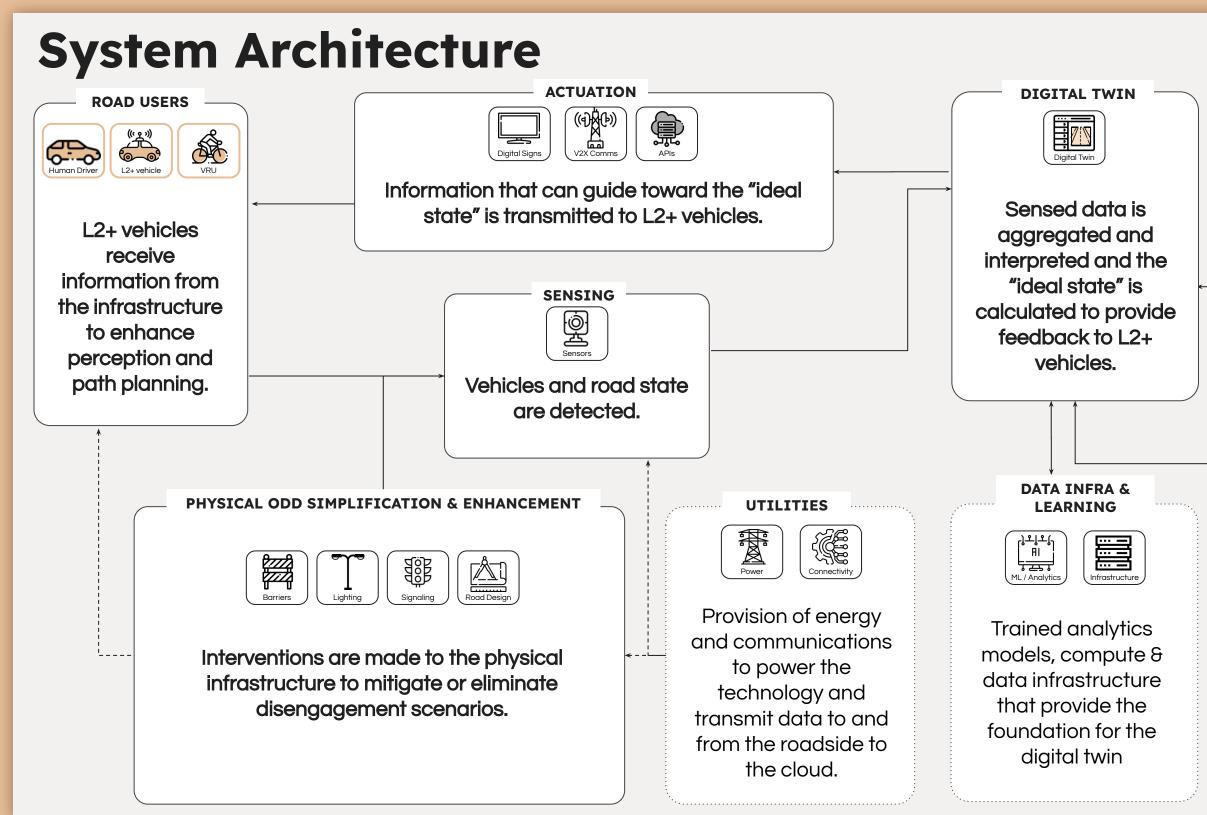
Advanced Driver Assistance Systems

SMART CARS NEED SMART ROADS

The future of roads will be safer and more efficient

cavnue

Simplifying the driving environment and providing digital insights to vehicles about the road ahead will accelerate the benefits of connected and automated driving.



Deploy sensors every 200 meters to provide a full view of the roadway

Develop insights that detect what is happening on

Provide information directly to the vehicle about the

Michigan CAV Corridor Project

Ultimate vision is to build a CAV-lane corridor between Detroit and Ann Arbor that improves the safety, connectivity, accessibility and affordability of mobility in SE Michigan.

Phase I is a collaborative piloting, planning, and feasibility exercise with the objective is to test technology and infrastructure, conduct analysis and community outreach, and establish a viable vision for the project.

8-

Join us on the road to the future

dino@cavnue.com

