

HIGHLY AUTOMATED DRIVING - HOW WE GET THERE

Reflections and challenges

Mohammad Ali – Chief Architect

FUTURE NETWORKED CAR SYMPOSIUM

THE CHALLENGE

Driver out of the loop (no engineer supervising)

AD vehicles must be able to handle all situations (and prove that it can!)

This puts unique requirements on the vehicle, its **software**, sensors, actuators and electrical architecture.

High impact on vehicle architecture

AD Vehicles require:

- Redundant sensing
- Redundant high-end control units
- Redundant brake system
- Redundant steering
- Redundant signaling paths
- Clustered power distribution
- Safety critical HMI

Zenseact | FUTURE NETWORKED CAR SYMPOSIUM

Complete redesign of software – pixels to torque

How to verify?

Infeasible to verify by driving billions of kilometers!

Zenseact | FUTURE NETWORKED CAR SYMPOSIUM

Kalra, Nidhi and Susan M. Paddock. Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability?. Santa Monica, CA: RAND Corporation, 2016.

Efficient machinery required

Evaluate

How to scale for continuous improvement?

Zenseact | FUTURE NETWORKED CAR SYMPOSIUM

zenseact

Make it real.